Conformally Flat Structures and Hyperbolic Structures

نویسنده

  • Xianzhe Dai
چکیده

We define an abelian group, the conformal cobordism group of hyperbolic structures, which classifies the hyperbolic structures according to whether it bounds a (higher dimensional) conformally flat structure in a conformally invariant way. We then construct a homomorphism from this group to the circle group, using the eta invariant. The homomorphism can be highly nontrivial. It remains an interesting question of how to compute this group.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Eta Invariant and Conformal Cobordism

In this note we study the problem of conformally flat structures bounding conformally flat structures and show that the eta invariants give obstructions. These lead us to the definition of an Abelian group, the conformal cobordism group, which classifies the conformally flat structures according to whether they bound conformally flat structures in a conformally invariant way. The eta invariant ...

متن کامل

Conformally Parallel G2 Structures on a Class of Solvmanifolds

Starting from a 6-dimensional nilpotent Lie group N endowed with an invariant SU(3) structure, we construct a homogeneous conformally parallel G2-metric on an associated solvmanifold. We classify all half-flat SU(3) structures that endow the rank-one solvable extension of N with a conformally parallel G2 structure. By suitably deforming the SU(3) structures obtained, we are able to describe the...

متن کامل

Conformally Flat Pencils of Metrics, Frobenius Structures and a Modified Saito Construction

The structure of a Frobenius manifold encodes the geometry associated with a flat pencil of metrics. However, as shown in the authors’ earlier work [1], much of the structure comes from the compatibility property of the pencil rather than from the flatness of the pencil itself. In this paper conformally flat pencils of metrics are studied and examples, based on a modification of the Saito const...

متن کامل

Metric Conformal Structures and Hyperbolic Dimension

For any hyperbolic complex X and a ∈ X we construct a visual metric ď = ďa on ∂X that makes the Isom(X)-action on ∂X bi-Lipschitz, Möbius, symmetric and conformal. We define a stereographic projection of ďa and show that it is a metric conformally equivalent to ďa. We also introduce a notion of hyperbolic dimension for hyperbolic spaces with group actions. Problems related to hyperbolic dimensi...

متن کامل

Optimization of Thermal Instability Resistance of FG Flat Structures using an Improved Multi-objective Harmony Search Algorithm

This paper presents a clear monograph on the optimization of thermal instability resistance of the FG (functionally graded) flat structures. For this aim, two FG flat structures, namely an FG beam and an FG circular plate, are considered. These structures are assumed to obey the first-order shear deformation theory, three-parameters power-law distribution of the constituents, and clamped bounda...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008